STRESS WAVES IN SOILS IN THE PRESENCE OF
CAVITATION EFFECTS
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Internal fractures in different materials, associated with stress waves caused by short-lived pulses [1]
reflected from free boundaries, complicate the solution of wave problems. The possibility of crack formation
(cavitation) under impact on an elastoplastic rod is shown in [2], while the procedure for a correction in the
computation of axisymmetric elastoplastic flows of a medium under the explosive action associated with the
crack-formation process, by a mesh method is described in general terms in [3]. A formulation and numeri-
cal solution of the one-dimensional problem of pulse loading of a soil layer in a gravity force field is presented
in this paper. The model of the soil is taken by a somewhat modified rheological Denisov—Murayami scheme
corresponding to the properties of clayey soil under volume strain [4]. It is assumed that the medium pos-
sesses the rupture strength limit, which specifies the origination and snapping of cracks under definite con-
ditions. A comparison between computations and an experiment conducted on a coarsely dispersed viscoelastic
material is presented.

§1. The one-dimensional problem of a vertical column supported on a rigid obstacle (the load is applied
to the free surface or is produced by motion of the obstacle) is considered. In commnection with the possibility
- of the appearance of shock and cavitation fronts in the medium, it is usually required to formulate conditions
on these moving boundaries. A finite-element approximation of the equations of the process and the method of
a through computation with artificial viscosity of the Neumann—Richtmyer type [5], which automatically as-
sures taking account of ruptures in continuity as well as shock transitions (somewhat spread out), are used.
The cavitation effects are checked by using logic operators in the algorithm of the problem.

The model of continuous sections of the medium for axial compression conditions (Fig. 1) is constructed
from elements of elastic Hj ©® = Cjt), viscous Nj o' =pu jé), and Coulomb friction K (p’ = o, sgnt for £ =0 and
£=0 for |1p°| < o,), which specifies partial irreversibility of the strain. Here p’, ¢ are the pressure and rela-
tive compressive strain of an individual element, Cj is the elastic modulus, p jis the coefficient of viscosity
G=1,2), o+ is the yield point, ( )" =8( )/dt, and t is the time. It is considered that yu; < y,, where y; corre-
sponds to the artificial viscosity in order of magnitude. Therefore, the elastic bebavior under loading is
bounded by the quantity o, outside of whose limits viscoelastoplastic properties appear. At comparatively
high pressures p (when p > ¢.) the influence of g is small and the viscoelastic behavior of the model corre-
sponds to a generalized Voigt model with two lag times. In order to reproduce the experimental values of the
residual strain in this case, it is sufficient to give an elevated value {during unloading) {o the parameter o,
[i.e., one of two values is given to o during solution of the problem: afrl for loading and o(f) for unloading].

The model has the structural formula (H; | Ny)— (H; | N, 1K), in which the vertical bar denotes a parallel
and the horizontal bar a series connection of the elements. The presence of dissipative elements results ina
set of pressure—strain (p ~ &) diagrams whose shape depends on the strain mode. For very high velocities
and small y, (on the order of the artificial viscosity), the upper envelope of the diagrams will correspond to the
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diagram of a loop with j = 1(H, I Ny}, which depends weakly on the strain rate. For slow {(quasistatic) strain of
the medium, its properties are expressed by the structural formula (H; — (H,! K}). Lesscomplex rheological
bodies — Maxwell, Voigt, Prandtl, Shvedov— Bingham, 2 standard linear body used earlier to identify the be-
havior of different soils [4] — are generalized by the model of Fig. 1.

The strain law for the model in Fig. 1 has the form (g, +py =0)

p=0Cg + .U41.81? (1.1)
:°'1 =% (Ri<oy, R=0Ce+ }‘«1:91 — Cara); (1.2)
(1 + 12)ey - (Cy -= Coey = ae + Cae -+ 045g08s{e; = B — £=520); (1.3)
. :{09 (R>0), (L4)
Tl (r<o)

where R is the pressure in an element K for g, =0 (i.e., without slip), €&, are the strains of the upper and
lower stories (links) of the model, respectively, and ¢ = ¢4 + ¢, is the total relative strain. Under the primary
loading e, = 0 and the bebhavior of the medium is determined by the relationships (1.1) and (1.2). From the time
the condition t = t* is spoiled for (1.2), Eq. (1.3) is integrated, where the continuity of €, and the transient
condition sgne,(+t*) = sgnR(—t*) are taken into account. Then, if the condition for (1.3) is spoiled during un-
loading, the friction in K checked by a change in the sign of the velocity &, ceases and a return to (1.2) is real-
ized, where the strain e, remains constant, since é2 = (0, etc. The relationship (1.4) develops the value of o,
in (1.3) and in the condition for (1.2) for arbitrary modes of the change in p(t) [the initial value is ¢. = ¢ +1 1.

It is later assumed that the initial strain of the medium, compressed by the actual pressure, is due to the
stiffness of the element H;, while an elastic element H, is unloaded completely because of secondary relaxa-
tion mechanisms. This condition of initial static equilibrium corresponds to the excess of the value o +1 over
the actual pressures along the whole soil column, which results in gradients in the parameter o in the medi~
um. As trial computations showed, this model reproduces wave processes in soft soils for pressures approxi-
mately up to 106 N/ m?

The Lagrange coordinate x directed along the free-fall acceleration vector g with origin x = 0 super-
posed on the free surface (imaginary decompressed reduction of the actual pressures) of soil with density p,.

The actual pressure p(z) =g Spoda: causes the strain ¢ = p/ C, and displacement of the particles in the layer
[

x x z
u(z,0)=— S e(y)dy = —¢ S itz & 0o (¥) dydz, where [; is the height of the layer in the decompressed state.
I I 0
Let us consider the mean density p and height [ of the compressed layer given; then [, = I + u(, 0), py = plly L
For p, = const, C; = const, u(0, 0) = Y/apgllC7Y, 1y = 11 — Y2gpl/ C~1, py = p(L — Y2gpl/ C).

The equations of motion and continuity of sections of a continuous medium have the form (( ) =8( )/8%)
Poll = — P’ + 8P (1.5)
g = —u. (1.6)

The system of equations (1.1)-(1.6) is closed and describes the behavior of the continuous sections of the
medium between the cracks. The initial conditions are determined by the displacements u(x, 0) and the zero
velocities u(x, 0) = 0. The boundary conditions have the form p = H(t —t)f;(t ~ t,) for x = 0 and &t = H(t)f,(t) for
x = L, where H(t) is the Heaviside function and t, is the phase shift of the boundary functions.

For the numerical solution, the conservation equations written down are referred to the finite element
of the medium, which transfers the boundary-value problem into a Cauchy problem for the system of ordinary
differential equations. Splitting the medium info an element with mass pjh per unit area is done by means of
the planes x; =hi (i=0, 1, 2,..., n); i =0 corresponds to the free surface and i = n to the obstacle. The
spacing of the splitting h = [,/ n is determined by the number of elements n. The system of conservation equa-
tions referred to a finite element of the medium (for centering the inertial properties at the points xj+;/y = %; %
h/2 and the strains at x;) is equivalent to finite~difference equations if the derivatives with respect to the co-
ordinate ( )' at the centering points are approximated in the form pj = Vp;h™, uj_s/, = Auj_;/,h™! by using the
difference operators VFj = Fx;) — F&; —h), AFj = F(xj + h) — F{xj), and the time derivatives ( )’ are assumed
ordinary and all the functions are referred to the appropriate centering points.
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Equations (1.5) and (1.6) are approximated in the form

Giyyss == — VPP + & 1.7
g;= — Auy_y bt (L8

The deformation at the point i = n, bounding the solid wall, is determined by the relationship ¢, =2 ( Up —

i
\ H (2) f5(3) dz) r~!, and at the point i = 0 by (1.1)-(1.4) for p, = p(0, t). The initial conditions are also referred
4]

to the centering points.

The conditions for the origination of discontinuities in the continuum can be different depending on the
physicomechanical properties of the medium. It is assumed below that the medium has a rupture strength ¢
and a zero resistance to rupture after collapse of the crack at the site of its formation, where the pressure
in the crack equals zero (the possible gas flow into the crack from the boundary pressure is not taken into
account).

The conditions for formation and closing of the crack are verified at the points i, i.e., at the joints of
discrete clements with their continuous individual strain (creep) taken into account. The calculation procedure
reduces to the following. The condition pi(t(i]) =< —|o | is verified at each time spacing At of the numerical inte-
gratiogl of the equations in all i. Its compliance corresponds to a primary rupture of the continuity in i at the
time t;, in which connection this value of i is stored. For t > tg, for the mentioned value of i (taking account
of the continuity of the displacements and the mass flow rates at the time of the transition t(i)), the calculations
of uj4 /5 are continued by means of (1.7) for p; =0 and those of the individual strains €j by means of (1.1)-(1.4)
until dimensions 62 of the originating cracks exist:

g o %0
8i = Uig1yp — Uity + hE; (B <t<ti®)

(for an element bounding the solid wall, h is taken with the coefficient 1/2). From the time t‘{“ of closing of
the crack (5‘{(6{") = 0), a return is made to the equations of the continuous medium. Subsequent ruptures are

verified by the condition p; = 0.

The mentioned checking procedure is carried out continuously, which permits taking account of the re-
peated appearance and collapse of the cracks. Therefore, if Egs. (1.7), (1.2), or (1.3) are integrated for sec-
tions of the continuous medium, then (1.1) at p; = 0 is integrated in addition for the discrete elements bounding
the cracks, where (1.2) and (1.3) are used to calculate the individual strains ;.

§2. To verify the influence of the cell dimension h on the nature of the crack-formation reproducible in
the computation, calculations were performed on the loading of a layer of a Voigt medium (p, = 2.04- 10° kg /
m?, C,=1.96" 10" N/m?, 7=/ C;=0.5" 10~ sec) with a zero resistance to rupture of height L = 2.5 m sup-
ported on a solid obstacle. The layer of medium is loaded by a pressure shock p, = 2p;Lg during the time
8 = L{(C{/py) -.1/2. Since 7/6 = 0.02 < 1, the behavior of the medium should be almost elastic. The passage of
an elastic wave to a solid obstacle corresponds to the pulse duration ¢ in a continuous elastic layer, and a ten-
sion exceeding the compression from its own weight first occurs att/6 = 2.5, x/L = 0.5, being propagated to
the layer boundaries at the velocity of the elastic wave.

The change in the strain e with time in different sections of the layer, obtained in the computations,
is shown in Fig. 2 for hy = h(p,C/) Y 2;11 =5; 2 and 0.5 (curves 1~3, respectively). The time-counting spacing
was taken from the condition At = ;hK/ C, in which the number K was determined from the expression K =
[(1.5h% + 1) /2 —1](2hy)-! [6] for h < 2 and K = 0,5 for 2 =h =5, The contribution of the viscous stresses
in the high-strain-rate zones does not exceed 10%. The initial phase of the exact solution for an elastic layer
compressed initially by its own weight is shown by the lines 4, where the beginning of the tension of the center
of the layer is noted by the arrow. A change in the relative dimension 6 = 5% h of the cracks in the period when
p = O(e ~0) is shown in the lower part of the graphs. Cavitation also originates in a Voigt medium at the center
of the layer at the same time, where the upper part of the half-layer disperses almost instantaneously. The
primary cavitation wave is propagated to the obstacle at the velocity ~1.1(C;/pg) /2, and the front of crack col-
lapse moves from the bottom up at a considerably lower velocity. The degree of growth in the fluctuation am-
plitude with the dimension h of the finite element is seen from the graphs; however, for h; < 2 the reproduction
of the functions &, 6 is sufficiently stable in the whole considered time interval containing two cavitationphases.
The fluctuations ceased for h; = 0.5 and the solution became independent of the size of the element.

§3. Results are presented for a numerical computation of compression wave interaction with a solid
located in the soil. The system of equations in Sec. 1 were supplemented by the equation of body motion
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where U is the displacement of a body of thickness y, X« is the Lagrange coordinate of its upper face, and m
is the specific mass of the body. Prior to the formation and after the collapse of the crack, (3.1) yields the
boundary conditions to (1.5) at the two sections of the medium into which the layer is divided by the body: u(x,,
t) = uly+ ¥ t), Uy, t) = ulk, - x, t). Therefore, (3.1) is included in the system of ordinary equations (1.7),
and the quantity h is taken with the coefficient 1/2 in the calculation of the strain in the medium on the bound-
aries with the solid by means of (1.8).

The material constants of the model of the medium were selected experimentally (the soil is sand, the
humidity by weight is 10-12%, and p, = 1.47 - 10° kg/ m?®). The equilibrium pliability I and time 7 corresponding
to the principal maximum of the lag spectrum were found in a first approximation from creep tests (under
unjaxial strain of a thin soil layer duc to the action of a step load ~10° N/ m?. The quantity C, was taken by
means of the propagation velocity of weak perturbations in the soil and p, by means of the condition for the arti-
ficial viscosity (see Sec. 2), i.e., C;= C;(C,{I~1)7% p, - 7C,. The quantities C,, ¢. were refined in a sceond
approximation by adjusting the computed compression wave configuration to an experiment conducted on a soil
layer packed in a rectangular tray of 0.7 m width, 3 m length, and L = 1.7 m depth with stiff, smooth vertical
walls lubricated by Vaseline and covered by a polymer film. A rigid body (parallelepiped) with the parameters
x = 27 cm, m = 2.84-10% kg/ m? (x4« = 38.5) was arranged in the soil.

An air shock with pressure ppy = 1.2 - 10° N/ m? at the front and duration 0 = 0.1 sec was propagated
along the long side of the tray to produce a pressure on the soil surface.

Oscillogram specimens of the boundary pressure 1, the pressure on the body surface 2, and at the bot-
tom of the tray 3 are presented in Fig. 3a.

The following values of the constants were used in the computations: C; = 3.64 - 10’ N/ m?, C, = 7.85 - 108
N/m? py= 1.28-10* N- sec/m?, y, - 2.25- 10* N-sec/ m% The yicld point was taken to be linearly increasing
with depth Uf_l) =a® + p@x (i = 1, 2), where a_(f) easily excecds the actual pressurc a(? = 2-10° N/ m?, blY =
b = pog = 1.44 - 10* N/ m?; the constant a(Z), regulating the unloading and residual strain tempos, varicd.

The boundary pressure is introduced into the computation by tables (according to oscillogram 1 in Fig.
3a). The size of the element of the medium is taken to be h = 5.5 cm.

Results of a computation of the time change in the pressure and the pressure—strain diagram on a body
surface x /L = 0.226 and at the tray bottom x/ L = 0.968 (corresponding to oscillograms 2 and 3, Fig. 3a) are
presented in Fig. 3b. The pressures in two analogous tests are shown by the points 1 and 2, and a computation
for a® = a0, 2@ = 10400 4@ = 25,0, respectively, by curves 3-5. A growth in the parameter 2@ does not
influence the initial phase of the process and the amplitude of the pressure, but results in an essential increase
in the residual strain.
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Crack formation in a medium with soil parameters is possible under short pulses. A computation of
compression wave passage into a homogeneous sand layer under the effect of a pressure shock p, = 13.6 p,Lg
of duration ¢ = L(Cl/po)_l/ 2 is presented in Fig. 4 (it is assumed that a® = 2.45-10° N/ m?. These computa-
tions are executed for the values h, == 4.55, 1.82, 0.455 (curves 1-3, respectively), where the identity of the
reproduction and the unfolding of the cracks is seen. The difference in the times of crack collapse for h = 1,82
and 0.455 does not exceed 0,50 in the range t/0 = 10-24 and does not influence the residual strain distribution

in the layer of the medium,
The use of the model in Fig. 1 is illustrated to describe wave processes in soft soils,

A. Propagation of Pressure Pulses Applied to the Free Layer Surface. The boundary pressure is taken
in the form p = pyy(1 —t/0)% in the computations. The values of the parameters are pm = 5- 10° N/m?, ¢ =
0.25 sec, o = 4. The time change in the pressure in the compression wave in a layer 25 m thick and at 0.5-5 m
depths (in 0.5-m intervals) is shown by curves 1-10 in Fig. 5a.

The size of the element of the medium is taken at h = 25 cm in the computations and the artificial vis-
cosity at yy = 0.2 - 10° N- sec/ m?, a® > a(l), while the remaining constants of the medium are the same as in

Sec. 3 (s = t/ 7, in Fig. 5).

The curve O corresponds to the boundary pressure. The computation is constrained by the {dimension-
less) time s = 37, although the influence of the solid boundary is negligible, in which connection extinction of
the pressure with depth and with time is observed.

The influence of a solid (m = 4.43 - 10° kg / m% located at a 3-m depth on the wave picture is shown in
Fig. 5b. The pressure directly above the body is shown here by curve 6, while the pressure below it is shown
by curve 7 and at every 0.5 m later by curves 8-11. The parameter a® is increased by the magnitude of the
body weight in this computation for the soil under the body. The presence of a mass in the layer results in the
origination of a reflected wave with the pressure p/py = 1.05.

B. Effect of a Seismic Perturbation on a Soil Layer Bounded by a Mass from Above. The seismic effect
is modeled by displacement of the solid (lower) boundary of the layer according to the Berlag law:

u = a, exp (—&,t) sin ot. 3.2)
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The thickness of a soft soil layer is 2.5 m, a, = 2 cm, g, = 39.8 sec™ !, w = 125 sec”!, and the remaining

parameters of the problem are the same as in the preceding computation. 1t is assumed that the medium has
a zero resistance to rupture,

The change in pressure and the mass flow rates {v, = ﬁ(wao)'i] in the layer with time is shown in Fig. 6a.
The velocity corresponding to the boundary function (3.2) and the pressure under the layer are shown by the
curves 1, the velocity and pressure at a I-m depth by the curves 2, and the body velocity and the pressure
under it by curves 3. Zones with zero pressure correspond to periods of crack opening. When an ejected body
drops on the soil, the pressure under it reaches p = 0.015 C, = 2.7 mg.

A comparison between computation and experiment of axial loading of a packet of thin cylindrical foam
plates (pp - 68.3 kg/ m?) by an air shock is presented. The packet consisting of 10 cylinders of 5-cm diameter
and 1.5 cm thickness each was mounted in a vertical position in a scaled Plexiglas chamber with a 5.2-cm-
inner diameter and was drawn in by a rubber membrane from above. The pressure was applied through the
membrane, where the packet was deformed under uniaxial stress state conditions. The shape of the pulse was
approximated well by the expression p = pp(1 ~t/8% pm = 7.35-10° N/ m?, 9 = 0.019 sec, a = 3.

The origination and opening of slots between cylinders in the packet were determined in tests by using
high-speed moving pictures (3700 frames /sec), where the light source was mounted opposite the movie cam-
era, A light strip on the moving picture film corresponded to the opening of the slot, where the bandwidth in
connection with ligh diffraction exceeded the slot width. Hence, the spacings between centers of the light bands
werc measured in processing the experiments.

It was established by the tests that the packet disperses almost instantancously from the time t - tj, and
deceleration of the dispersion associated with the resistance of the membrane starts for t — t; = 8 msee. The
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time change in the spacing A(t) between centers of two light bands, one of which was between the 6 and 7 and
the other between the 8 and 9 cylinders (counting from the top), is shown by curve 1 in Fig. 6b.

Constants of the material in application to a two-element Voigt model were first obtained in creep tests
for the computation: C; *7-10%5 N/ m?, C,=6-10° X/ m?, py; = 1.5-10° N+ sec/ m?, y, - 2 10° N-sec/ m?
The results of the computation, performed on the effect of the above-mentioned nonstationary pulse (for o, = 0,
h = 1.5 cm) in the form of the function A(t), are shown by curve 2. The beginning of the slot formation in the
computation and the tests agreed with high accuracy and corresponds to the value tk = 20 msec.

The authors are grateful to S. S. Grigoryan for attention to the research and for discussion.
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A POINT EXPLOSION IN A COMPRESSED
MULTICOMPONENT MIXTURE

A. M. Maslennikov and V. S. Fetisov UDC 534.222

Among the various approaches to the study of the motions of a compressed medium, a special place is
occupied by self-similar methods for the solution of the hydrodynamic equations, making it possible to reduce
the problem to the investigation of ordinary differential equations. In [1] a scheme was developed for the cal-
culation of the self-similar motions of an ideal gas in an incompressible liquid in the case of a strong point
explosion; in [2] the methods of [1] were generalized for the case of a strong explosion in a compressible me-
dium. Both pieces of work considered one-component media. At the same time, the study of explosive motions
in media consisting of several components is of considerable interest for practical purposes.

In order that the problem of a strong point explosion in a compressible medium be self-similar, it is
sufficient that the eguation of state of the medium have the form

e(p,p) = —;’—0 ® (—g—o—) + const, 1)

where ¢ is the internal energy; p and p are the pressure and the density, respectively; p; is a constant with the
dimensionality of density; and & is an arbitrary function of its argument. Directly from relationship (1) there
follows the equation of the adiabat of the medium:

plo) = W(S)x(p/po)s
where 8 is the entropy. The connection between the functions ¢ and y is determined by the formulas

=1 L (A o al e iR .
(D(R)_%_(_R){CfSWdHJ’ X(R)*m(mexpjmm(ﬂ)' (1a)
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